目前,使用深度學(xué)習(xí)目標(biāo)檢測進(jìn)行工業(yè)缺陷檢測時,主要有以下缺點:
(1)缺陷未知性:由于缺陷的成像有位置、形狀、光源等影響因素在,不同因素會組合成各種各樣的缺陷,將使得AI目標(biāo)檢測算法學(xué)習(xí)起來變得異常困難。只能不斷增加已知的缺陷類別,如果將來出現(xiàn)未知類型的缺陷類別,設(shè)備將失去其該有的作用,可能會給生產(chǎn)方帶來損失。
(2)缺陷收集困難:缺陷數(shù)據(jù)集收集困難,人造或合成的缺陷與真實缺陷相差大,存在低質(zhì)量樣本數(shù)據(jù),數(shù)據(jù)收集周期較長,可能持續(xù)推遲設(shè)備的交付日期,這使得生產(chǎn)方將在人力成本上繼續(xù)投入,且項目前期誤檢漏檢情況出現(xiàn)頻繁,使得使用方對設(shè)備檢測能力的信心出現(xiàn)動搖,這將違背深度學(xué)習(xí)在工業(yè)領(lǐng)域的初衷,為企業(yè)提供智能化、無人化的工廠,減小過程成本。
(3)低頻缺陷攔截困難:即使是已知且數(shù)據(jù)集充足類別的缺陷,也會出現(xiàn)與此種類別特征不相近的缺陷,可能出現(xiàn)漏檢情況
基于以上問題點,異常檢測算法應(yīng)用在工業(yè)質(zhì)檢行業(yè)的優(yōu)勢就涌現(xiàn)了出來,因為無監(jiān)督算法的特性在,可以繞開目標(biāo)檢測算法在工業(yè)領(lǐng)域遇到的部分問題。
異常檢測算法優(yōu)勢:
(1)異常檢測是無監(jiān)督算法,不需要缺陷數(shù)據(jù)集,僅需要ok數(shù)據(jù)集即可,部分異常檢測算法僅需要少量ok數(shù)據(jù)集,避免了收集缺陷困難的問題。
(2)不需要對各類別各形態(tài)缺陷進(jìn)行定性,避免了新類別或新特征不能檢出問題,避免了難區(qū)分缺陷類別的認(rèn)定。
鑒于以上問題,通過深度學(xué)習(xí)異常檢測算法,避免了低頻缺陷數(shù)據(jù)集收集困難,未知類別缺陷難攔截的問題,并在缺陷數(shù)據(jù)集不足的情況下,能夠很好的解決檢出問題。對于工業(yè)領(lǐng)域的零漏檢的高標(biāo)準(zhǔn)要求更進(jìn)一步。有效的減少了項目周期,更加快速的給企業(yè)帶來生產(chǎn)環(huán)節(jié)上的效益增長。
異常檢測:
異常是指偏離預(yù)期的事件或項目。與標(biāo)準(zhǔn)事件的頻率相比,異常事件的頻率較低。產(chǎn)品中可能出現(xiàn)的異常通常是隨機(jī)的,例如顏色或紋理的變化、劃痕、錯位、缺件或比例錯誤。
異常檢測(Anomaly Detection)也稱偏差(deviation)檢測或者離群點(outlier)檢測,從數(shù)據(jù)的角度來看,其實就是檢測出和眾多其他觀測值差別非常大的一個特殊的觀測值。異常檢測在歷史上實際是數(shù)據(jù)預(yù)處理的一個步驟,但是在現(xiàn)代研究中越來越重要,逐漸發(fā)展為一個獨立的領(lǐng)域。
無監(jiān)督異常檢測:
沒有標(biāo)簽情況下,往往目標(biāo)是將一個得分或標(biāo)號賦予給每個數(shù)據(jù)對象。比如聚類算法,根據(jù)一些規(guī)則將數(shù)據(jù)進(jìn)行無監(jiān)督的聚類。簡單直白地講,如果聚類簇比較偏遠(yuǎn),或者密度比較少,可能就是異常。類似查找圖像離群點算法如孤立森林、SVM等。 但是基于檢測圖像中離群點是不穩(wěn)定的,由于零件本身形態(tài)特性復(fù)雜,很多時候不能區(qū)分開正常點與離群點。
以前基于深度學(xué)習(xí)的工作主要集中在生成算法,如生成對抗網(wǎng)絡(luò)(GAN)或變分自動編碼器(VAEs) 。無監(jiān)督生成模型通過學(xué)習(xí)真實數(shù)據(jù)的本質(zhì)特征,刻畫出樣本數(shù)據(jù)的分布特征,生成與訓(xùn)練樣本相似的新數(shù)據(jù)。模型能夠發(fā)現(xiàn)并有效地內(nèi)化數(shù)據(jù)的本質(zhì),并生成這些數(shù)據(jù)。生成式模型可以用于在沒有目標(biāo)類標(biāo)簽信息的情況下捕捉觀測到可見數(shù)據(jù)的高階相關(guān)性。
如基于生成對抗網(wǎng)絡(luò)(GAN)或變分自動編碼器(VAEs)的生成網(wǎng)絡(luò),在該網(wǎng)絡(luò)中,編碼器接受輸入數(shù)據(jù),并將其壓縮為潛伏空間表示,然后解碼器將從該空間重構(gòu)輸入數(shù)據(jù)。
VAE將圖像轉(zhuǎn)換為統(tǒng)計分布的參數(shù):均值和方差。然后,VAE使用均值和方差參數(shù)隨機(jī)采樣分布的一個元素,并將該元素解碼回原始輸入。該過程的隨機(jī)性提高了魯棒性并迫使?jié)撛诳臻g在任何地方編碼有意義的表示:在潛在空間中采樣的每個點被解碼為有效輸出。
隨著深度學(xué)習(xí)算法不斷進(jìn)軍工業(yè)界,服務(wù)于工業(yè)領(lǐng)域的AI算法也將更加成熟、穩(wěn)定,針對工業(yè)領(lǐng)域的算法與解決方案不斷的涌現(xiàn),其數(shù)據(jù)集也在不斷收集中,且出現(xiàn)了異常檢測算法評估數(shù)據(jù)集MVTec,在異常檢測算法頻繁刷榜MVTec后,相信在不久將來會廣泛應(yīng)用于工業(yè)領(lǐng)域。由于目標(biāo)檢測極其依賴缺陷數(shù)據(jù)集,異常檢測可能在某些情形下會替代目標(biāo)檢測,或許兩者結(jié)合才是更佳的方案。